Dependence of ionophore- and caffeine-induced calcium release from sarcoplasmic reticulum vesicles on external and internal calcium ion concentrations.

نویسندگان

  • A M Katz
  • D I Repke
  • W Hasselbach
چکیده

The effects of the ionophore, X537A, and caffeine on ATP-dependent calcium transport by fragmented sarcoplasmic reticulum were studied in the absence (calcium storage) or presence (calcium uptake) of calcium-precipitating anions. The ionophore caused rapid calcium release after calcium storage, the final level of calcium storage being the same whether a given concentration of X537A was added prior to initiation of the reaction or after calcium storage had reached a steady state. Although 10 to 12 muM X537A caused approximately 90% inhibition of oxalate-supported calcium uptake when added prior to the start of the reaction, this ionophore concentration caused only a small calcium release when added after a calcium oxalate precipitate had formed within the vesicles, and only slight inhibition of calcium uptake velocity when added during the calcium uptake reaction. When low initial calcium loads limited calcium uptake to 0.4 mumol of calcium/mg of protein, subsequent calcium additions in the absence of the ionophore led to renewed calcium uptake. Uptake of the subsequent calcium additions was not significantly inhibited by 10 to 12 muM X537A. These phenomena are most readily understood in terms of constraints imposed by fixed Cai (calcium ion concentration inside the vesicles) on the pump-leak situation in sarcoplasmic reticulum vesicles containing a large amount of an insoluble calcium precipitate, where most of the calcium is within the vesicles and Cai is maintained at a relatively low level. These constraints restrict calcium loss after calcium permeability is increased because calcium release can end when the calcium pump is stimulated by the increased Cao (calcium concentration outside the vesicles) so as to compensate for the increased efflux rate. In contrast, an increased permeability in vesicles that have stored calcium in the absence of a calcium-precipitating ion causes a much larger portion of the internal calcium store to be released. Under these conditions calcium storage capacity is low so that release of stored calcium is less able to raise Cao to levels where the calcium pump can compensate for the increased efflux rate. The constraints imposed by anion-supported calcium uptake explain the finding that more calcium is released by X537A or caffeine when these agents are added at higher levels of Cao, and that more calcium leaves the vesicles in response to a given increase in calcium permeability at higher Cai. Although such calcium release is amplified by increased Cao, the amplification is attributable to the constraints described above and does not represent a "calcium-triggered calcium release."

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation and inhibition of the calcium gate of sarcoplasmic reticulum by high-affinity ryanodine binding.

The occupancy of high-affinity ryanodine-binding sites of isolated heavy sarcoplasmic reticulum vesicles occurring in concentrated salt solutions affects ATP-dependent calcium accumulation and caffeine-induced calcium release. The initial suppression of calcium uptake is followed by a marked uptake activation resulting in a reduction of the final calcium level in the medium. Simultaneously, caf...

متن کامل

Modulation by monovalent anions of calcium and caffeine induced calcium release from heavy sarcoplasmic reticulum vesicles.

Both calcium and caffeine induced calcium release from actively loaded heavy sarcoplasmic reticulum vesicles were studied to analyze the dependence of both activities on the composition of the release medium with respect to monovalent anions. Calcium is unable to induce net calcium release while caffeine remains effective as releasing agent when the experimental media contain neither chloride n...

متن کامل

Modulation by ryanodine of active calcium loading and caffeine induced calcium release of heavy sarcoplasmic reticulum vesicles.

The effect of ATP on the calcium release channel in heavy sarcoplasmic reticulum vesicles modulated by ryanodine has been analyzed by monitoring active calcium uptake and caffeine induced calcium release under near physiological conditions. Native as well as ryanodine reacted vesicles display a complex time course of calcium uptake resulting in nearly complete exhaustion of medium calcium when ...

متن کامل

Calcium release from aortic sarcoplasmic reticulum.

The ability of ionsitol 1,4,5-trisphosphate (IP3) and other inositol phosphates to induce calcium release from canine aortic sarcoplasmic reticulum vesicles was examined. Using the calcium indicator chlorotetracycline or antipyrylazo III, aortic vesicles were shown to accumulate calcium in the presence of ATP, and then release approximately 25% of the intravesicular calcium upon addition of 7 m...

متن کامل

Selective abolition of sarcoplasmic reticulum vesicles' calcium releasing mechanisms.

The ability of calcium loaded heavy sarcoplasmic reticulum vesicles to specifically respond to the addition of various agents such as caffeine, calcium ions and calmodulin antagonists to rapidly released calcium can largely be diminished by passing the vesicular suspension it 0.3 M sucrose, 0.6 M KCl, 4 mM CaCl2, pH 7.0 through a Sepharose 6B column or by centrifuging it through a sucrose gradi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 252 6  شماره 

صفحات  -

تاریخ انتشار 1977